Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas
نویسندگان
چکیده
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction.
منابع مشابه
Automatic Extraction of Urban Road Networks from Ikonos Images Using a Fuzzy Mathematical Morphology Approach
High-resolution commercial imaging satellite such as IKONOS provides an important new data sources for urban mapping and geographic information systems (GIS) applications. This paper presents a fuzzy mathematical morphology method for automated extraction of urban road networks from IKONOS imagery. In this proposed method, the road networks in a complex urban scene are firstly modeled, followed...
متن کاملValidation of Volunteered Geographic Information Landuse Change Using Satellite Imagery
Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...
متن کاملRoad Extraction in Rural and Urban Areas
An approach for automatic road extraction from digital aerial imagery is presented. The extraction is based on a semantic model for roads. The images are divided into different so-called “global contexts”: rural, forest, and urban. Different parts of the road model and different strategies are used in the different global contexts. In rural areas, a multi-scale approach is employed to find init...
متن کاملRoad Extraction from High-resolution Remote Sensing Image Based on Phase Classification
It is still an open problem to extract road feature from high-resolution remote sensing image, although this topic had been intensively investigated and many methods had been put forwards. All works for this thesis are focused on modern urban road and include the following four steps: image pre-processing, threshold calculation, feature extraction for straight line and curved line, target recon...
متن کاملAutomatic Extraction of Urban Road Networks from Multi-View Aerial Imagery
In this paper, we present work on automatic road extraction from high resolution aerial imagery taken over urban areas. In order to deal with the high complexity of this type of scenes, we integrate detailed knowledge about roads and their context using explicitly formulated scale-dependent models. The knowledge about how and when certain parts of the road and context model are optimally exploi...
متن کامل